Регистрация
Регистрация Поиск Сообщество  
CGM > Всякая всячина > Игра вообще
Опции темы

Задачка без шкатулок :)

Важные объявления
Старый 12.08.2007, 04:03     TS Старый   #1 (permalink)
Бессмертный
 
Аватар для Bull
 
Регистрация: 06.04.2005
Адрес: Ростов
Сообщений: 2,716
Так как шкатулки всех изрядно достали, хочу предложить другую задачку. Причем сразу оговорюсь, почему все-таки в названии темы вновь звучат проклятые шкатулки
Дело в том, что несмотря на раздоры, считаю, что обсуждение получилось интересным и полезным. Полезным хотя бы по тому, что в ней столкнулись два подхода к проблеме - классический и другой (не знаю, как его назвать, но пусть будет подход Коровина). Его подход, кстати, я не в состоянии признать математическим, но спокойно признаю имеющим право на существование в плоскости решения так называемых ОЦЕНОЧНЫХ задач, которыми баловался в свое время Ферми. Впрочем, это отдельная тема. А в моей теме некоторая эфемерная аналогия со шкатулками заключается в том, что в моем вопросе есть так же НЕИЗВЕСТНЫЕ ВЕЛИЧИНЫ, ИЗБИРАЕМЫЕ ЖИВЫМИ ЛЮДЬМИ, в чем легко убедиться, ознакомившись с ней .

Итак, вот мой вопрос или задачка - как хотите. В детстве мы играли в игру на деньги. которая, кажется, даже не имела названия. Смысл заключался в том, что два игрока ставили на кон произвольное количество монет. Делали они эту втемную, то есть ни один из игроков не знал, сколько ставит на кон его оппонент монет и какую они составляют сумму. ну, в реальности это выглядело так, что они отворачивались друг от друга и зажимали монеты, которые собирались поставить на кон, в кулаке. Затем, повернувшись друг к другу лицом, они разжимали кулаки. Правом первого хода, а соответственно и преимуществом обладал игрок, который выставил на кон бОльшую СУММУ в деньгах, вне зависимости от того, из какого количества монет сложена эта сумма. Далее ходом считался бросок монет с некоторой высоты на пол. Монеты, перевернувшиеся орлом, доставались тому, кто сделал ход. Монеты, лежащие после броска решкой вверх, брались вторым игроком для его хода. И так далее, пока все монеты не были разыграны.
После этого начинался новый кон.

Итак, предположим, что игроки не обладают никакими навыками разбрасывания монет, что, в общем, близко к истине, так как монеты бросались с высоты с минимумом движений - просто раскрывались ладони и монеты летели вниз, потом многократно отскакивали от твердого пола или асфальта и т.д. То есть, сколько будет перевернуто монет и какого номинала за бросок - можно считать абсолютно случайным фактором. Внимание, вопрос: сколько монет и какого номинала выставлять на кон будет оптимальным решением.
Напомню две вещи:

1. Игрок, поставивший на кон наибольшую сумму, имеет преимущество первого хода

2. Монеты в советские времена были следующих номиналов - 1 коп., 2 коп., 3 коп., 5 коп., 10 коп., 15 коп., 20 коп., 50 коп., 1 руб.
__________________
Cuius rei demonstrationem mirabilem sane setex hanc marginis exiguitas non caparet

Bull вне форума      
Старый 12.08.2007, 06:25   #2 (permalink)
Старожил
 
Регистрация: 25.05.2006
Сообщений: 805
Писать буду не очень подробно, всё-таки утро, спать пора . Смысл в следующем:

Сначала определим, что даёт преимущество первого броска. Каждую отдельную монетку первый игрок получит с вероятностью 1/2+1/8+1/32+...=2/3, второй, соответственно, 1/3.

Следовательно, МО того, сколько денег получит первый бросающий, не зависит от номиналов монет, и равно 2/3 от общей суммы.

Так как от номиналов ничего не зависит (ну то есть не ничего, дисперсия зависит, например, но МО не зависит), стратегии игроков полностью определяются суммами.

Пусть первый игрок поставил Х коп., второй У.

МО для первого игрока равно:
2/3(Х+У)-Х = (2У-Х)/3, если Х>У,
1/3(Х+У)-Х = (У-2Х)/3, если Х<У,
0, если Х=У (этот случай неоговорён, но тут по любому ноль ).

При желании можно нарисовать таблицу с выигрышами в зависимости от стратегий (сумм) двух игроков. Нули будут при Х=У, Х=2У и 2Х=У, в четырёх секторах преимущество какого-то из игроков.

Дальше можно искать равновесные стратегии по Нэшу. Удаётся найти такую серию равновесных стратегий:

Ставить 1 копейку с вероятностью 1/2<=р<=1, 2 копейки с вероятностью 1-р. Для любого такого р эта стратегия будет равновесной.

В частном случае можно всегда ставить 1 копейку. Ставя одну копейку, игрок обеспечивает себе МО=0 в случае, если второй поставит 1 или 2 копейки, и МО>0, если тот поставит больше.

Любая другая стратегия бьётся.

Равновесное значение выигрыша, естественно, равно 0.

Вот такая фигня получается с точки зрения теории игр. Для применения как-то не очень годится, вероятность того, что побить могут, не учтена
__________________
Нужно уметь проигрывать. К этой мысли следует постепенно приучать всех своих противников.
SunnyRay вне форума      

Похожие темы
Тема Автор Раздел Ответов Последнее сообщение
Задачка qetou Ваши прогнозы 27 22.07.2016 20:29
n-шкатулок (приз в одной) на n-учасников ziksa Игра вообще 5 12.09.2007 14:10
задачка Uran Безлимитный холдем микро бай-инов 16 24.07.2006 13:10
Задачка john Блэкджек 5 08.11.2005 19:52



Ваши права в разделе
Вы не можете создавать новые темы
Вы не можете отвечать в темах
Вы не можете прикреплять вложения
Вы не можете редактировать свои сообщения

BB коды Вкл.
Смайлы Вкл.
[IMG] код Вкл.
HTML код Выкл.
Trackbacks are Выкл.
Pingbacks are Выкл.
Refbacks are Выкл.

Быстрый переход
Правила форумов CGM Контакты Справка Обратная связь CGM.ru Архив Вверх Главная
 
Использование материалов сайта разрешено только при наличии активной ссылки на источник.
Все права на картинки и тексты принадлежат Информационному агентству CGM и их ПАРТНЕРАМ. Политика конфидециальности
CGM.ru на Youtube CGM.ru на Google+ CGM.ru в Twitter CGM.ru на Facebook CGM.ru в vKontakte CGM.ru в Instagram

В сотрудничестве с Pokeroff.ru
Текущее время: 20:57. Часовой пояс GMT +3.
Powered by vBulletin® Version 3.8.7
Copyright ©2000 - 2024, vBulletin Solutions, Inc. Перевод: zCarot